Month: November 2017

Destroying The Environment To Save It

Flying to London, I watched Bill Nye and Arnold Schwarzenegger explain that “most people feel no effects of climate change now,” but “there will be no humans left on the planet in 2030.”  Bill Nye also said “in a few years half of us will be underwater, and the other half will be choking on carbon pollution.”

In order to appease Bill Nye’s psychosis, England is building giant bird choppers off the coast of Brighton.

Someone should probably tell the Science Guy that he exhales 100 times as much CO2 as he inhales, and that he probably isn’t going to choke on his own breath. Quite the contrary, doctors use extra CO2 to calm down hyperventilating idiots like Bill Nye.

via The Deplorable Climate Science Blog

http://ift.tt/2AHNLms

November 30, 2017 at 09:41AM

German Grid Agency Raises Wind Power Auction Prices To Avoid ‘Rupture’

Maximum support rate for onshore wind raised to ensure continuous expansion

The maximum support rate for onshore wind power installations in Germany’s renewables auctions scheme has been raised to 6.3 cents per kilowatt hour to ensure competition among bidders and a continuous expansion of the energy source, the Federal Grid Agency (BNetzA) says in a press release. Without the raise, the maximum support rate would have had to be derived from the results of previous auctions. These were dominated by citizen energy projects with long implementation periods which based their bids on projected future input prices that do not necessarily reflect current cost levels, the BNetzA says. The support rate in this case would now stand at 5cts/kWh, less than the current energy generation costs for onshore wind power of 5.6cts/kWh, which might have led to a situation in which not enough bidders compete in the next auction to exhaust the entire tendered volume. “The increase of the maximum price allows for a healthy competition in 2018,” BNetzA head Jochen Homann said. “Bidders can submit price levels that enable them to operate the installations at a profit.”

Raise of maximum support rate for onshore wind power auctions “a necessary correction”

The decision by Germany’s Federal Grid Agency (BNetzA) to increase the maximum support rate for onshore windpower installations in renewables auctions to 6.3 cents per kilowatt hour was “a first step to correct undesired developments” in the tender system, Hermann Albers, head of the German Wind Energy Association (BWE), says. The move was necessary to avoid a “rupture” in expansion of the energy source as bidders could now be sure to operate their installations at a profit. This is because  the original price that would have been derived from previous auction results is lower than current energy generation costs for onshore wind power, the BWE says. The reason for this is that citizen energy projects in the tenders are allowed to submit bids for projects that will only be implemented about four years later, which enables them to speculate on price drops in the future, the lobby group says.  The German Association of Energy and Water Industries (BDEW) says that the increase was “a necessary correction” to the current auction system. The special rules for citizen projects led to “market distortion”, which warranted an amendment in the Renewable Energy Act that obliges citizen projects to abide by the same licensing and implementation rules as their competitors, BDEW head Stefan Kapferer said.

Full post

via The Global Warming Policy Forum (GWPF)

http://ift.tt/2k8mrXs

November 30, 2017 at 09:22AM

Qatar Runs Out of Sand!

Sand covers so much of the earth’s surface that shipping it across borders—even uncontested ones—seems extreme. But sand isn’t just sand, it turns out. In the industrial world, it’s “aggregate,” a category that includes gravel, crushed stone, and various recycled materials. Natural aggregate is the world’s second most heavily exploited natural resource, after water, and for many uses the right kind is scarce or inaccessible. In 2014, the United Nations Environment Programme published a report titled “Sand, Rarer Than One Thinks,” which concluded that the mining of sand and gravel “greatly exceeds natural renewal rates” and that “the amount being mined is increasing exponentially, mainly as a result of rapid economic growth in Asia.”

Pascal Peduzzi, a Swiss scientist and the director of one of the U.N.’s environmental groups, told the BBC last May that China’s swift development had consumed more sand in the previous four years than the United States used in the past century. In India, commercially useful sand is now so scarce that markets for it are dominated by “sand mafias”—criminal enterprises that sell material taken illegally from rivers and other sources, sometimes killing to safeguard their deposits. In the United States, the fastest-growing uses include the fortification of shorelines eroded by rising sea levels and more and more powerful ocean storms—efforts that, like many attempts to address environmental challenges, create environmental challenges of their own.

 Geologists define sand not by composition but by size, as grains between 0.0625 and two millimetres across. Just below sand on the size scale is silt; just above it is gravel. Most sand consists chiefly of quartz, the commonest form of silica, but there are other kinds. Sand on ocean beaches usually includes a high proportion of shell pieces and, increasingly, bits of decomposing plastic trash; Hawaii’s famous black sand is weathered fragments of volcanic glass; the sand in the dunes at White Sands National Monument, in New Mexico, is mainly gypsum. Sand is almost always formed through the gradual disintegration of bigger rocks, by the action of ice, water, wind, and time, but, as the geologist Michael Welland writes, in his book “Sand: The Never-Ending Story,” many of those bigger rocks were themselves formed from accumulations of the eroded bits of other rocks, and “perhaps half of all sand grains have been through six cycles in the mill, liberated, buried, exposed, and liberated again.”

Sand is also classified by shape, in configurations that range from oblong and sharply angular to nearly spherical and smooth. Desert sand is almost always highly rounded, because strong winds knock the grains together so forcefully that protrusions and sharp edges break off. River sand is more angular. William H. Langer, a research geologist who retired from the U.S. Geological Survey a few years ago and now works as a private consultant, told me, “In a stream, there’s a tiny film of water around each grain, so when the grains bang together there’s enough energy to break them apart but not enough to let them rub against each other.” The shape of sand deposited by glaciers and ice sheets depends partly on how far the sand was moved and what it was moved over. Most of the sand in the Hutcheson quarry is “sub-angular”: the grains have fractured faces, but the sharp edges have been partly abraded away. Sand that’s very slightly more smooth-edged is “sub-rounded.”

Aggregate is the main constituent of concrete (eighty per cent) and asphalt (ninety-four per cent), and it’s also the primary base material that concrete and asphalt are placed on during the building of roads, buildings, parking lots, runways, and many other structures. A report published in 2004 by the American Geological Institute said that a typical American house requires more than a hundred tons of sand, gravel, and crushed stone for the foundation, basement, garage, and driveway, and more than two hundred tons if you include its share of the street that runs in front of it. A mile-long section of a single lane of an American interstate highway requires thirty-eight thousand tons. The most dramatic global increase in aggregate consumption is occurring in parts of the world where people who build roads are trying to keep pace with people who buy cars. Chinese officials have said that by 2030 they hope to have completed a hundred and sixty-five thousand miles of roads—a national network nearly three and a half times as long as the American interstate system.

[…]

One engineer I spoke to told me that transporting sand and stone for ordinary construction becomes uneconomical after about sixty miles, and that builders usually make do with whatever is available within that radius, even if it means settling for materials that aren’t ideal. In some places, though, there are no usable alternatives. Florida lies on top of a vast limestone formation, but most of the stone is too soft to be used in construction. “The whole Gulf Coast is starved for aggregate,” William Langer, the research geologist, told me. “So they import limestone from Mexico, from a quarry in the Yucatán, and haul it by freighter across the Caribbean.” Even that stone is wrong for some uses. “You can build most of a road with limestone from Mexico,” he continued, “but it doesn’t have much skid resistance. So to get that they have to use granitic rock, which they ship down the East Coast from quarries in Nova Scotia or haul by train from places like inland Georgia.” When Denver International Airport was being built, in the nineteen-nineties, local quarries were unable to supply crushed stone as rapidly as it was needed, so vast quantities were brought from a quarry in Wyoming whose principal product was stone ballast for railroad tracks. The crushed stone was delivered by a freight train that ran in a continuous loop between the quarry and the work site.

Deposits of sand, gravel, and stone can be found all over the United States, but many of them are untouchable, because they’re covered by houses, shopping malls, or protected land. Regulatory approval for new quarries is more and more difficult to obtain: people don’t want to live near big, noisy holes, even if their lives are effectively fabricated from the products of those holes. The scarcity of alternatives makes existing quarries increasingly valuable. The Connecticut quarry I visited is one of a number owned by Stanley’s company, and like many in the United States it’s in operation today only because it predates current mining regulations.

[…]

Ten years ago, I spent a week in Dubai, which at the time was one of the fastest-growing cities in the world. Construction cranes and imported laborers were everywhere. The work went on all night, and the city’s extraordinary traffic congestion was continually being made worse by road-widening projects intended to relieve it. Exhaust from cars and trucks, in combination with wind-borne dust from the Arabian Desert and humid air from the Persian Gulf, formed a thick, phlegm-colored haze that made breathing unpleasant—an effect exacerbated by the ferocious heat. (Dubai gets so hot during the summer that many swimming pools are cooled, rather than heated.)

One day, I played golf with an Australian who worked for a major real-estate developer. The course, like Dubai itself, had been built on empty desert, and I commented that creating fairways and greens in such a forbidding environment must be difficult. “No,” the Australian said. “Deserts are easy, because you can shape the sand into anything you like.” The difficult parts, paradoxically, are the areas that are supposed to be sand: deserts make lousy sand traps. The wind-blown grains are so rounded that golf balls sink into them, so the sand in the bunkers on Dubai’s many golf courses is imported. Jumeirah Golf Estates—on the outskirts of the city, next to the desert—has two courses, Fire and Earth, both designed by Greg Norman. The sand in the bunkers on the Earth course is white (the most prized color for golf sand) and was bought from a producer in North Carolina. The sand on the Fire course is reddish brown—more like the desert across the road. Norman’s company bought it from Hutcheson, which mined it at its quarry in Ontario, sifted it to make it firmer than volleyball sand, kiln-dried it, dyed it, and loaded it onto a ship.

Unfortunately for Dubai’s builders and real-estate developers, desert sand is also unsuitable for construction and, indeed, for almost any human use. The grains don’t have enough fractured faces for concrete and asphalt, and they’re too small and round for water-filtration systems. The high-compression concrete used in Dubai’s Burj Khalifa, the world’s tallest structure, was made with sand imported from Australia. William Langer told me that other desert countries face similar shortages. “Mauritania is trying to catch up with the world,” he said. “They’ve got sand all over the place, but it isn’t good even for highway construction.” Stone is so scarce in Bangladesh that contractors commonly resort to making concrete with crushed brick.

[…]

The New Yorker

via Watts Up With That?

http://ift.tt/2kcgo46

November 30, 2017 at 08:45AM

2 More New Papers Affirm There Is More Arctic Ice Coverage Today Than During The 1400s

 A Shrinking Anthropogenic Signal

 Continues To Emerge In The Arctic


Earlier this year, Stein et al., 2017 published a reconstruction of Arctic sea ice variations throughout the Holocene that appeared to establish that there is more Arctic sea ice now than for nearly all of the last 10,000 years.

The study region, the Chukchi Sea, was deemed representative of most of the Arctic, as the authors asserted that “the increase in sea ice extent during the late Holocene seems to be a circum-Arctic phenomenon as PIP25-based sea ice records from the Fram Strait, Laptev Sea, East Siberian Sea and Chukchi Sea  display a generally quite similar evolution, all coinciding with the decrease in solar radiation.”

The proxy data used to reconstruct Arctic-wide sea ice variations over the Holocene (PIP25) clearly show that modern sea ice extent has only modestly retreated relative to the heights reached during the Little Ice Age (the 17th and 18th centuries),  and that the from about 1400 A.D.on through the rest of the 10,000-year-long Holocene, Arctic sea ice extent was much lower than it is today.


In 2014, Dr. Qinghua Ding and colleagues published a consequential paper in the journal Nature contending that much of the warming trend in the Arctic since 1979 can be traced to “unforced natural variability” rather than anthropogenic forcing.

A substantial portion of recent warming in the northeastern Canada and Greenland sector of the Arctic arises from unforced natural variability.”

Then, a few months ago, Dr. Ding and co-authors published another Nature paper (Ding et al., 2017) that extended  a natural attribution to trends in Arctic sea ice variability, concluding that as much as half of the decline in Arctic sea ice since 1979 is due to internal (natural) factors, further undermining the position that anthropogenic forcing dominates Arctic sea ice changes.

Internal variability dominates the Arctic summer circulation trend and may be responsible for about 30–50% of the overall decline in September sea ice since 1979.”

Within the last month, two more papers have been published that further affirm the conclusion that modern Arctic sea ice extent has not changed significantly relative to even the last few centuries, nor has it fallen outside the range of natural variability.

1. Like Stein et al. (2017), Yamamoto et al., 2017 largely attribute Holocene sea ice concentration variations to solar forcing, and they assemble a reconstruction of sea ice trends for the region that once again clearly shows sea ice coverage is greater now than it has been for almost all of the Holocene.

“Millennial to multi-centennial variability in the quartz / feldspar ratio (the BG [Beaufort Gyre] circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG [Beaufort Gyre] strength on these timescales. … The intensified BSI [Bering Strait in-flow] was associated with decrease in sea-ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting a major influence of the BSI on sea-ice and biological conditions in the Chukchi Sea. Multi-century to millennial fluctuations, presumably controlled by solar activity, were also identified in a proxy-based BSI record characterized by the highest age resolution. … Proxy records consistent with solar forcing were reported from a number of paleoclimatic archives, such as Chinese stalagmites (Hu et al., 2008), Yukon lake sediments (Anderson et al., 2005), and ice cores (Fisher et al., 2008), as well as marine sediments in the northwestern Pacific (Sagawa et al., 2014) and the Chukchi Sea (Stein et al., 2017).”


2. In another new paper, Moffa-Sánchez and Hall, 2017  analyze subpolar temperature changes, glacier advances and declines, and sea ice variations in the Labrador Sea, North Atlantic, North Iceland, Alaska, Swedish Laplandand , and Northwestern Europe region.

“Paleoceanographic reconstructions from a more northward location of the polar front on the North Iceland margin show centennial-scale cold events and marked increases in sea ice with similar timing to the cold events recorded in the eastern Labrador Sea.  … The records from the northernmost sites show a linear cooling trend perhaps driven by the Neoglacial decrease in summer insolation in the northern high latitudes and its effects on Arctic sea ice production. … This strong correspondence in the timing of ocean and continental climate variability suggests that the ocean conditions, particularly the formation of LSW, related changes in the subpolar gyre strength, and attendant northward heat transport, were probably key in modulating the climate in northwest Europe. … [A] recent model comparison study has highlighted the inability of most climate models to correctly represent the surface mixed layer depth in the subpolar gyre region and hence likely underestimating the potential for a future collapse of the LSW formation/subpolar gyre under enhanced freshwater forcing. It is therefore essential that we continue to improve our understanding of the LSW/subpolar gyre dynamics at a range of time scales to reduce uncertainty in future climate predictions.”
“Periods of increased influence of polar waters in the eastern Labrador Sea, reduced LSW  [Labrador Sea Water] formation and weaker subpolar gyre largely coincide with well-established cold periods recorded in glacier advances, tree-ring and pollen records in the circum-North Atlantic and northwest Europe [Dark Ages Cold Period, Little Ice Age]. … Conversely, periods of reduced influence of polar waters in the eastern Labrador Sea, stronger subpolar gyre and increase LSW [Labrador Sea Water] formation largely coincide with mild/warm periods in Europe namely the Roman Warm Period and the Medieval Climatic Anomaly. These intervals are recorded as periods of glacier retreats and/or periods of no glacier advances, with milder temperatures allowing the northward expansion of vineyard crops to the North of Italy and even the British Isles.”

The authors find that while Arctic sea ice coverage was more advanced during the Little Ice Age, sea ice concentrations in the waters north of Iceland were far lower than now from about 500 years ago onward, especially during the centuries encompassing the Medieval Warm Period (or Medieval Climate Anomaly) and Roman Warm Period.


Glacier advance and retreat for the Alaska and Swedish Lapland regions also followed the climate trends associated with the Little Ice Age, Medieval Climate Anomaly, Dark Ages Cold Period, and Roman Warm Period.   During the earlier warm periods and for most of the last 3,000 years, glacier recession was more pronounced than it is now.


Moffa-Sánchez and Hall (2017) also report that sea surface temperatures north of Iceland were much warmer in the past than they are now.


Finally, the 10-150 m layer of the Labrador Sea  has also not undergone any net warming trend in the last 75 years.

Moffa-Sánchez and Hall, 2017   (supplemental)


It has become increasingly apparent that there is nothing unusual or unprecedented about the amplitude of modern sea ice retreat and advance, glacier retreat and advance, and overall temperature changes in the Arctic and subpolar Arctic regions.

This development significantly compromises the detection of an anthropogenic signal.

via NoTricksZone

http://ift.tt/2i5DHbI

November 30, 2017 at 08:17AM