Salt pond in Antarctica, among the saltiest waters on Earth, is fed from beneath

Don Juan Pond, Antarctica [image credit: NASA]

Researchers plan to camp near this shallow pond for six weeks starting in December, to get detailed measurements of its liquid and explore the local area.

At the base of the Transantarctic Mountains lies a geological oddity, reports Hannah Hickey at UW News.

Don Juan Pond is one of the saltiest bodies of water on the planet, filled with a dense, syrupy brine rich in calcium chloride that can remain liquid to minus 50 degrees Celsius, far below the freezing point of water.

But the source of water and salt to this unusual pond remains a mystery — even as hints emerge that water in a similar form could exist on Mars.

A new University of Washington study uses the pond’s bizarre chemistry to pinpoint the water’s source.

The recent paper, published Sept. 15 in Earth and Planetary Science Letters, reports that it is fed by a regional deep groundwater system and not, as previously suggested, from moisture seeping down from local valley slopes.

“Don Juan Pond is probably one of the most interesting ponds on Earth,” said lead author Jonathan Toner, a UW research assistant professor in Earth and space sciences. “After 60 years of extensive study, we still don’t really know exactly where it’s coming from, what drives the fact that it’s visible on the surface, and how it’s changing.”

The perennial pond measures about 100 by 300 meters, the size of a few football fields, and is about 10 centimeters (4 inches) deep on average. It was first visited in 1961 and named after the expedition’s helicopter pilots, Donald Roe and John Hickey, earning it the name Don Juan Pond. The unique salts in the pond lower the freezing point, which is why this saline pond can exist in a place where the temperature ranges from minus 50 to plus 10 degrees Celsius (-58 to +50 F).

The pond was long believed to be fed by deep groundwater. But then a high-profile 2013 paper suggested that near-surface moisture seeps, similar to recurring slope lineae features recently observed on Mars, were transporting salts downhill to create the salt pond.

Toner is a geochemist specializing in the formation and properties of water in extreme environments on Earth, Mars and beyond. For the new study, Toner created a model to compute how salty water changes during evaporation, freezing, and with different water and salt inputs and outputs. In Antarctica’s appropriately named McMurdo Dry Valleys, water evaporation concentrates salts in the pond, which forces some salts to crystallize. These processes, along with inputs and outputs, cause the pond’s water to change over time.

Toner ran his model for two situations: one where the water was gurgling up from beneath, and another where it was trickling down from near-surface seeps. Results show that the observed chemical makeup could only be produced from underneath.

“You couldn’t get Don Juan Pond from these shallow groundwaters,” Toner said. “It’s definitely coming from the deep groundwater.”

Continued here.

via Tallbloke’s Talkshop

http://ift.tt/2j5FFZI

November 19, 2017 at 05:03AM

Leave a comment