This time, unusually, the new Younger Dryas evidence is from way below the equator, which they believe shows that ‘the Younger Dryas climatic onset was an extreme global event’.
When UC Santa Barbara geology professor emeritus James Kennett and colleagues set out years ago to examine signs of a major cosmic impact that occurred toward the end of the Pleistocene epoch, little did they know just how far-reaching the projected climatic effect would be, says Phys.org.
“It’s much more extreme than I ever thought when I started this work,” Kennett noted. “The more work that has been done, the more extreme it seems.”
He’s talking about the Younger Dryas Impact Hypothesis, which postulates that a fragmented comet slammed into the Earth close to 12,800 years ago, causing rapid climatic changes, megafaunal extinctions, sudden human population decrease and cultural shifts and widespread wildfires (biomass burning).
The hypothesis suggests a possible triggering mechanism for the abrupt changes in climate at that time, in particular a rapid cooling in the Northern Hemisphere, called the Younger Dryas, amid a general global trend of natural warming and ice sheet melting evidenced by changes in the fossil and sediment record.
Controversial from the time it was proposed, the hypothesis even now continues to be contested by those who prefer to attribute the end-Pleistocene reversal in warming entirely to terrestrial causes.
But Kennett and fellow stalwarts of the Younger Dryas Boundary (YDB) Impact Hypothesis, as it is also known, have recently received a major boost: the discovery of a very young, 31-kilometer-wide impact crater beneath the Greenland ice sheet, which they believe may have been one of the many comet fragments that impacted Earth at the onset of the Younger Dryas.
Now, in a paper published in the journal Nature Scientific Reports, Kennett and colleagues, led by Chilean paleontologist Mario Pino, present further evidence of a cosmic impact, this time far south of the equator, that likely lead to biomass burning, climate change and megafaunal extinctions nearly 13,000 years ago.
“We have identified the YDB layer at high latitudes in the Southern Hemisphere at near 41 degrees south, close to the tip of South America,” Kennett said. This is a major expansion of the extent of the YDB event.”
The vast majority of evidence to date, he added, has been found in the Northern Hemisphere.
Full report here.
Paper: Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka [Nature | scientific reports]
via Tallbloke’s Talkshop
March 13, 2019 at 05:13PM

