Forces from Earth’s spin may spark earthquakes and volcanic eruptions at Mount Etna

Mount Etna, Sicily

The article says: ‘Every 6.4 years, the axes line up and the wobble fades for a short time.’ This looks a lot like 5.4 Chandler wobbles (CW), so you would have 6.4 years minus 5.4 CW = 1 cycle, i.e. 32:27 ratio = 5 (32-27) cycles.
Much more analysis of this time period and related matters in this 2013 Talkshop post:
Ian Wilson: Solar System Timings Evolved Lunar Orbital Elements Linked to Earth’s Chandler Wobble
.

New research suggests forces pulling on Earth’s surface as the planet spins may trigger earthquakes and eruptions at volcanoes, reports Phys.org.

Seismic activity and bursts of magma near Italy’s Mount Etna increased when Earth’s rotational axis was furthest from its geographic axis, according to a new study comparing changes in Earth’s rotation to activity at the well-known Italian volcano.

Earth’s spin doesn’t always line up perfectly with its north and south poles. Instead, the geographic poles often twirl like a top around Earth’s rotational axis when viewed from space.

Every 6.4 years, the axes line up and the wobble fades for a short time—until the geographic poles move away from the spin axis and begin to spiral once again.

This phenomenon, called polar motion, is driven by changes in climate due to things like changing seasons, melting ice sheets or movement from tectonic plates.

As polar motion fluctuates, forces pulling the planet away from the sun tug at Earth’s crust, much like tides due to the gravitational pull from the sun and moon. The tide from polar motion causes the crust to deform over the span of seasons or years. This distortion is strongest at 45 degrees latitude, where the crust moves by about 1 centimeter (0.4 inches) per year.

Now, a new study published in AGU’s journal Geophysical Research Letters suggests that polar motion and subsequent shifts in Earth’s crust may increase volcanic activity.

“I find it quite exciting to know that while climate drives Earth’s spin, its rotation can also drive volcanoes and seismicity,” said Sébastien Lambert, a geophysicist at Paris Observatory in France and lead author of the study.

The new findings, however, don’t allow scientists to forecast volcanic activity. Although the study suggests earthquakes might be more common or volcanic eruptions may eject more lava when the distance between Earth’s geographic and rotational axes is at its peak, the timescale is too large for meaningful short-term forecasts, according to the authors.

But the results point to an interesting concept. “It’s the first time we’ve found this relationship in this direction from Earth’s rotation to volcanoes,” Lambert said. “It’s a small excitation process, but if you accumulate a small excitation over a long time it can lead to measurable consequences.”

Full article here.

via Tallbloke’s Talkshop

https://ift.tt/2ZuPMvP

December 27, 2019 at 02:03PM

Leave a comment