Promotional video:
Regardless of questionable greenhouse climate theories, who wouldn’t want lower fuel consumption rates for their vehicle? ‘Up to 30%’ better economy is mentioned.
– – –
A technology developed by researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory could pave the way for increased fuel economy and lower greenhouse gas emissions as part of an octane-on-demand fuel-delivery system, reports Phys.org.
Designed to work with a car’s existing fuel, the onboard separation technology is the first to use chemistry—not a physical membrane—to separate ethanol-blended gasoline into high- and low-octane fuel components.
An octane-on-demand system can then meter out the appropriate fuel mixture to the engine depending on the power required: lower octane for idling, higher octane for accelerating.
Studies have shown that octane-on-demand approaches can improve fuel economy by up to 30 percent and could help reduce greenhouse gas emissions by 20 percent.
But so far, the pervaporation membranes tested for octane on demand leave nearly 20 percent of the valuable high-octane fuel components in the gasoline.
In proof-of-concept testing with three different chemistries, PNNL’s patent-pending onboard separation technology separated 95 percent of the ethanol out of commercial gasoline. The materials are also effective for separating butanol, a promising high-octane renewable fuel component.
Market ripe for technology to improve fuel economy
High-compression engines that squeeze the most work out of each drop of fuel are the engines of the future. Unfortunately, these engines exacerbate a pesky problem known as engine knock.
Akin to a bicyclist whose feet slip off the pedals and slap around, knock happens when an engine’s piston and combustion sequence are momentarily out of sync—usually during acceleration. Knock can rob vehicles of power and even cause expensive engine damage.
Higher-octane fuels can eliminate knock but are expensive to produce. Ethanol is an inexpensive fuel additive that increases the octane rating to combat knock. The additive modestly curbs greenhouse gas emissions—but reduces vehicle performance and fuel economy.
When a car burns gas while sitting at a stop light or idling at the curb, it’s wasting the valuable high-octane fuel better used for acceleration.
That’s where PNNL’s onboard separation technology comes in. As part of an octane-on-demand system, the technology optimizes the available fuel by staging the right fuel for the right time.
Allan Tuan, a commercialization manager at PNNL, said that federal requirements for both renewable fuels and increasing fuel economy make new fuel strategies like octane on demand more important and more relevant than ever.
“With the increasing use of ethanol and, over time, other biofuels, a technology like PNNL’s onboard separation technology means we don’t need to choose between reduced greenhouse gas emissions and fuel economy,” said Tuan.
Full article here.
via Tallbloke’s Talkshop
May 22, 2020 at 03:30AM
