Something else the climate scientists missed: outgassing due to continental drift


When continents break it gets warm on Earth 

Rift zones released large amounts of CO2 from depth, which influenced global climate change

The concentration of carbon dioxide (CO2) in the atmosphere determines whether the Earth is in greenhouse or ice age state. Before humans began to have an impact on the amount of CO2 in the air, it depended solely on the interplay of geological and biological processes, the global carbon cycle. A recent study, headed by the GFZ German Research Centre for Geosciences in Potsdam, shows that the break-up of continents – also known as rifting – contributed significantly to higher CO2 concentrations in the atmosphere.

The East African Rift System is currently the largest in the world. Yet, the global rift network 130 and 50 million years ago was more than 5 times longer. CREDIT Brune, NASA WorldWind.

The carbon distribution on Earth is highly unbalanced: In fact only one-hundred-thousandth of the carbon dioxide on our planet is found in the atmosphere, biosphere and the oceans with the remaining 99.999% bound in the deep Earth. However, this enormous carbon store at depth is not isolated from the atmosphere. There is a constant exchange between the underground and the surface over millions of years: Tectonic plates that sink into the deep mantle take large amounts of carbon with them. At the same time it was believed that deep carbon is released due to volcanism at mid-oceanic ridges in the form of CO2.

In the current study, published in Nature Geoscience, the research team comes to a different conclusion. Although volcanic activity at the bottom of the ocean floor causes CO2 to be released, the main CO2 input from depth to the atmosphere, however, occurs in continental rift systems such as the East African Rift (Fig. 1) or the Eger Rift in Czech Republic. “Rift systems develop by tectonic stretching of the continental crust, which may lead to break-up of entire plates”, explains Sascha Brune from GFZ. “The East African Rift with a total length of 6,000 km is the largest in the world, but it appears small in comparison to the rift systems which were formed 130 million years ago when the supercontinent Pangea broke apart, comprising a network with a total length of more than 40,000 km.”

With the help of plate tectonic models of the past 200 million years and other geological evidence scientists have reconstructed how the global rift network has evolved. They have been able to prove the existence of two major periods of enhanced rifting approx. 130 and 50 million years ago. Using numerical carbon cycle models the authors simulated the effect of increased CO2 degassing from the rifts and showed that both rifting periods correlate with higher CO2 concentrations in the atmosphere at that time.

Our continents result from the fragmentation of the supercontinent Pangea. This plate reconstruction 180 million years ago shows today’s countries for orientation. CREDIT S. Brune, GPlates

“The global CO2 degassing rates at rift systems, however, are just a fraction of the anthropogenic carbon release today”, adds Brune. “Yet, they represent a missing key component of the deep carbon cycle that controls long-term climate change over millions of years.”


Link to the paper:

Potential links between continental rifting, CO2 degassing and climate change through time


The concentration of CO2 in the atmosphere is a key influence on Earth’s climate. Today, significant quantities of CO2 are emitted at continental rifts, suggesting that the spatial and temporal extent of rift systems may have influenced deep carbon fluxes and thus climate change throughout geological time. Here we test this hypothesis by conducting a worldwide census of continental rift lengths over the last 200 million years. We estimate tectonic CO2 release rates through time and show that along the extensive Mesozoic and Cenozoic rift systems, rift-related CO2 degassing rates reached more than 300% of present-day values. Using a numerical carbon cycle model, we find that two prominent periods of enhanced rifting 160 to 100 million years ago and after 55 million years ago coincided with greenhouse climate episodes, during which atmospheric CO2 concentrations were more than three times higher than today. We therefore propose that continental fragmentation and long-term climate change could plausibly be linked via massive CO2 degassing in rift systems.

via Watts Up With That?

November 13, 2017 at 04:31PM

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: