Jupiter and Saturn have equivalents of Earth’s Quasi-Biennial Oscillation 

Jupiter’s cloud bands [image credit: NASA]

The report says: ‘On Earth, this relationship between distant events in a planet’s climate system is known as teleconnection.’ The surprise was to find evidence of it on both of the solar system’s two biggest planets.

Immense northern storms on Saturn can disturb atmospheric patterns at the planet’s equator, finds the international Cassini mission in a study led by Dr Leigh Fletcher from the University of Leicester.

This effect is also seen in Earth’s atmosphere, suggesting the two planets are more alike than previously thought, reports Phys.org.

Despite their considerable differences, the atmospheres of Earth, Jupiter, and Saturn all display a remarkably similar phenomenon in their equatorial regions: vertical, cyclical, downwards-moving patterns of alternating temperatures and wind systems that repeat over a period of multiple years.

These patterns—known as the Quasi-Periodic Oscillation (QPO) on Saturn and the Quasi-Quadrennial Oscillation (QQO) on Jupiter, due to their similarities to Earth’s so-called Quasi-Biennial Oscillation (QBO)—appear to be a defining characteristic of the middle layers of a planetary atmosphere.

Earth’s QBO is regular and predictable, repeating every 28 months on average. However, it can be disrupted by events occurring at great distances from the equator of our planet—and a new study reveals that the same is true of Saturn’s QPO.

“These oscillations can be thought of as a planet’s heartbeat,” says Leigh Fletcher of the University of Leicester, UK, lead author of the study (published in Nature Astronomy) and co-investigator of Cassini’s Composite Infrared Spectrometer (CIRS). “Cassini spotted them on Saturn about a decade ago, and Earth-based observations have seen them on Jupiter, too. Although the atmospheres of the distant gas giants may appear startlingly different to our own, when we look closely we start to discover these familiar natural patterns.”

“We looked at data of Saturn’s ‘heartbeat’, which repeats roughly every 15 Earth years, and found a huge disturbance—a palpitation, to continue the metaphor—spanning 2011 to 2013, where the whole equatorial region cooled dramatically,” adds co-author Sandrine Guerlet from Laboratoire de Météorologie Dynamique (LMD), France.

“When we checked the timing, we realised this happened directly after the eruption of a giant storm that wrapped around Saturn’s entire northern hemisphere. This suggests a link between the two events: we think that the wave activity associated with this huge storm headed towards the equator and disrupted the QPO, despite the storm raging tens of thousands of kilometres away!”

Continued here.

via Tallbloke’s Talkshop

http://ift.tt/2AUbyNv

December 13, 2017 at 04:54PM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: