A Tiny Particle’s Wobble Could Upend the Known Laws of Physics

From the NYT

The Muon g-2 ring, at the Fermi National Accelerator Laboratory in Batavia, Ill., operates at minus 450 degrees Fahrenheit and studies the wobble of muons as they travel through the magnetic field.The Muon g-2 ring, at the Fermi National Accelerator Laboratory in Batavia, Ill., operates at minus 450 degrees Fahrenheit and studies the wobble of muons as they travel through the magnetic field.The Muon g-2 ring, at the Fermi National Accelerator Laboratory in Batavia, Ill., operates at minus 450 degrees Fahrenheit and studies the wobble of muons as they travel through the magnetic field.
The Muon g-2 ring, at the Fermi National Accelerator Laboratory in Batavia, Ill., operates at minus 450 degrees Fahrenheit and studies the wobble of muons as they travel through the magnetic field.Credit…Reidar Hahn/Fermilab, via U.S. Department of Energy

Something interesting may be happening at Fermilab.

Evidence is mounting that a tiny subatomic particle seems to be disobeying the known laws of physics, scientists announced on Wednesday, a finding that would open a vast and tantalizing hole in our understanding of the universe.

The result, physicists say, suggests that there are forms of matter and energy vital to the nature and evolution of the cosmos that are not yet known to science.

“This is our Mars rover landing moment,” said Chris Polly, a physicist at the Fermi National Accelerator Laboratory, or Fermilab, in Batavia, Ill., who has been working toward this finding for most of his career.

The particle célèbre is the muon, which is akin to an electron but far heavier, and is an integral element of the cosmos. Dr. Polly and his colleagues — an international team of 200 physicists from seven countries — found that muons did not behave as predicted when shot through an intense magnetic field at Fermilab.

The aberrant behavior poses a firm challenge to the Standard Model, the suite of equations that enumerates the fundamental particles in the universe (17, at last count) and how they interact.

The article is well worth a read and a nice distraction from politicized EVERYTHING

For decades, physicists have relied on and have been bound by the Standard Model, which successfully explains the results of high-energy particle experiments in places like CERN’s Large Hadron Collider. But the model leaves many deep questions about the universe unanswered.

Most physicists believe that a rich trove of new physics waits to be found, if only they could see deeper and further. The additional data from the Fermilab experiment could provide a major boost to scientists eager to build the next generation of expensive particle accelerators.

It might also lead in time to explanations for the kinds of cosmic mysteries that have long preoccupied our lonely species. What exactly is dark matter, the unseen stuff that astronomers say makes up one-quarter of the universe by mass? Indeed, why is there matter in the universe at all?

Perhaps it’s time to junk the Standard Model. Perhaps not.

The full article is an interesting read.

Like this:

Like Loading…

Related

via Watts Up With That?

https://ift.tt/3fSEKuA

April 8, 2021 at 04:44AM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s