Clean Coal: Carbon Capture and Enhanced Oil Recovery, Part Deux

Guest post by David Middleton

Not quite a year ago (April 18, 2017) I authored a post on the completion of the Petra Nova carbon capture project at the W. A. Parrish coal-fired power plant in Fort Bend County, Texas.  Petra Nova was billed as “the largest post-combustion carbon capture project in the world.”  In addition to capturing CO2 from a very large coal-fired power plant, Petra Nova was also designed to serve a useful purpose: Deliver CO2 for enhanced oil recovery to West Ranch Oil Field in Jackson County, Texas.  The ultimate goal is to boost production in the field from around 500 barrels of oil per day (BOPD) to 15,000 BOPD and recover about 60 million barrels that would otherwise have been left in the ground.

EIA had an update on the carbon capture aspect back in October…

OCTOBER 31, 2017

image of Petra Nova, as explained in the article text

Source: Petra Nova, a joint venture between NRG Energy and JX Nippon Oil & Gas Exploration


The Petra Nova facility, a coal-fired power plant located near Houston, Texas, is one of only two operating power plants with carbon capture and storage (CCS) in the world, and it is the only such facility in the United States. The 110 megawatt (MW) Boundary Dam plant in Saskatchewan, Canada, near the border with North Dakota, is the other electric utility facility using a CCS system.

[…]

Petra Nova’s post-combustion CO2 capture system began operations in January 2017. The 240-megawatt (MW) carbon capture system that was added to Unit 8 (654 MW capacity) of the existing W.A. Parish pulverized coal-fired generating plant receives about 37% of Unit 8’s emissions, which are diverted through a flue gas slipstream. Petra Nova’s carbon-capture system is designed to capture about 90% of the carbon dioxide (CO2) emitted from the flue gas slipstream, or about 33% of the total emissions from Unit 8. The post-combustion process is energy intensive and requires a dedicated natural gas unit to accommodate the energy requirements of the carbon-capture process.

graph of carbon dioxide emission intensity at W.A. Parish Unit 8, as explained in the article text


The carbon dioxide captured by Petra Nova’s system is then used in enhanced oil recovery at nearby oil fields. Enhanced oil recovery involves injecting water, chemicals, or gases (such as carbon dioxide) into oil reservoirs to increase the ability of oil to flow to a well.

By comparison, Kemper had been designed to capture about 65% of the plant’s CO2 using a pre-combustion system. The capital costs associated with the Kemper project were initially estimated at $2.4 billion, or about $4,100 per kilowatt (kW), but cost overruns led to construction costs in excess of $7.5 billion (nearly $13,000/kW). Petra Nova CCS retrofit costs were reported to be $1 billion, or $4,200/kW, and the project was completed on budget and on time.

Principal contributor: Kenneth Dubin

US EIA

Here’s an update on how the carbon capture project is affecting electricity output at the power plant and oil production in West Ranch Oil Field.

WAParrish_01

Figure 1.  Output is relatively unchanged.  The greatest demand occurs during May through September when temperatures are highest.  May-Sept 2016: Avg. Temp 82 °F, total output  7,802,898 MWh.  May-Sept 2017 Avg. Temp 80 °F, total output  7,655,403 MWh.   Nameplate capacity is about 4,000 MW and carbon capture only affects 240 MW; so this shouldn’t be a surprise.

A win-win… Coal-fired power plant keeps the AC running and a thirty-fold increase in oil production from an old field… And the Obama maladministration actually paid for part of this with our tax dollars because of the carbon capture aspect… Priceless.

 

via Watts Up With That?

http://ift.tt/2FlN05k

March 8, 2018 at 03:05PM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: