New valve technology promises cheaper, greener engines

VVT engine [image credit: motortrend.com]

This type of technology may not be quite as new as suggested in the report. Various manufacturers have tried it in one form or another.

Technology developed at the University of Waterloo reliably and affordably increases the efficiency of internal combustion engines by more than 10 per cent, says TechXplore.

The product of a decade of research, this patented system for opening and closing valves could significantly reduce fuel consumption in everything from ocean-going ships to compact cars.

“This method has the potential to bring the well-established benefits of a fully variable valve system out of the lab and into production engines because cost and complexity aren’t issues,” said Amir Khajepour, a professor of mechanical and mechatronics engineering at Waterloo.

Intake and exhaust valves in internal combustion engines are typically controlled by cam mechanisms that do not allow the timing of their opening and closing to be varied.

The technology developed by Waterloo researchers replaces cams with hydraulic cylinders and rotary hydraulic valves that enable fully variable timing as the speed and torque of an engine change.

This ability to specifically time the opening and closing of valves according to engine operation is a key to increasing fuel efficiency, reducing both costs and greenhouse gas emissions.

“If you think about an ideal solution, it is to make the motion of the valve completely controllable,” said Khajepour, who is also a Canada Research Chair and director of Waterloo’s Mechatronic Vehicle Systems Lab. “That gives you infinite options to work with.”

Although other systems to vary valve timing already exist, they are limited to use in experimental engines in laboratories due to their high cost and complexity.

Continued here.

via Tallbloke’s Talkshop

http://ift.tt/2pvAPrR

March 21, 2018 at 05:42AM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: