Lunar Soil has the Potential to Generate Oxygen and Fuel


Peer-Reviewed Publication

CELL PRESS

Electrolysis catalyzed by lunar soil
VIDEO: THIS VIDEO SHOWS PHOTOVOLTAIC-DRIVEN WATER ELECTROLYSIS CATALYZED BY LUNAR SOIL. view more  CREDIT: YINGFANG YAO

Soil on the moon contains active compounds that can convert carbon dioxide into oxygen and fuels, scientists in China report May 5 in the journal Joule. They are now exploring whether lunar resources can be used to facilitate human exploration on the moon or beyond.

Nanjing University material scientists Yingfang Yao and Zhigang Zou hope to design a system that takes advantage of lunar soil and solar radiation, the two most abundant resources on the moon. After analyzing the lunar soil brought back by China’s Chang’e 5 spacecraft, their team found the sample contains compounds—including iron-rich and titanium-rich substances—that could work as a catalyst to make desired products such as oxygen using sunlight and carbon dioxide.

Based on the observation, the team proposed an “extraterrestrial photosynthesis” strategy. Mainly, the system uses lunar soil to electrolyze water extracted from the moon and in astronauts’ breathing exhaust into oxygen and hydrogen powered by sunlight. The carbon dioxide exhaled by moon inhabitants is also collected and combined with hydrogen from water electrolysis during a hydrogenation process catalyzed by lunar soil.

The process yields hydrocarbons such as methane, which could be used as fuel. The strategy uses no external energy but sunlight to produce a variety of desirable products such as water, oxygen, and fuel that could support life on a moonbase, the researchers say. The team is looking for an opportunity to test the system in space, likely with China’s future crewed lunar missions.

“We use in-situ environmental resources to minimize rocket payload, and our strategy provides a scenario for a sustainable and affordable extraterrestrial living environment,” Yao says.

While the catalytic efficiency of lunar soil is less than catalysts available on Earth, Yao says the team is testing different approaches to improve the design, such as melting the lunar soil into a nanostructured high-entropy material, which is a better catalyst.

Previously, scientists have proposed many strategies for extraterrestrial survival. But most designs require energy sources from Earth. For example, NASA’s Perseverance Mars rover brought an instrument that can use carbon dioxide in the planet’s atmosphere to make oxygen, but it’s powered by a nuclear battery onboard.

“In the near future, we will see the crewed spaceflight industry developing rapidly,” says Yao. “Just like the ‘Age of Sail’ in the 1600s when hundreds of ships head to the sea, we will enter an ‘Age of Space.’ But if we want to carry out large-scale exploration of the extraterrestrial world, we will need to think of ways to reduce payload, meaning relying on as little supplies from Earth as possible and using extraterrestrial resources instead.”

###

This work was supported by the National Key Research and Development Program of China, the Major Research Plan of the National Natural Science Foundation of China, the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams, the Natural Science Foundation of Jiangsu Province. the open fund of Wuhan National Laboratory for Optoelectronics, the Hefei National Laboratory for Physical Sciences at the Microscale, the Civil Aerospace Technology Research Project: Extraterrestrial In-situ water Extraction and Photochemical Synthesis of Hydrogen and Oxygen, and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory.

Joule, Yao, Wang, Zhu, and Tu et al. “Extraterrestrial Photosynthesis by Chang’E-5 Lunar Soil.” https://www.cell.com/joule/fulltext/S2542-4351(22)00178-7

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage to impactful analysis at the global level. Visit http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.


JOURNAL

Joule

DOI

10.1016/j.joule.2022.04.011 

METHOD OF RESEARCH

Experimental study

SUBJECT OF RESEARCH

Not applicable

ARTICLE TITLE

Extraterrestrial photosynthesis by Chang’E-5 lunar soil

ARTICLE PUBLICATION DATE

5-May-2022

via Watts Up With That?

https://ift.tt/Y6kmh3G

May 6, 2022 at 12:23AM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s